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Summary

Within the frame-work of the Glashow-Salam-Weinberg model it is shown
that the Higgs-field mediates an attractive scalar gravitational interaction of
Yukawa-type between the elementary particles which become massive by the
ground- state of the Higgs-field after symmetry breaking.

1. Introduction.

Until now the origin of the mass of the elementary particles is unclear. Usually
mass is introduced by the interaction with the Higgs-field; however in this way
the mass is not explained, but only reduced to the parameters of the Higgs-
potential, whereby the physical meaning of the Higgs-field and its potential
remains non-understood.

On the other hand there exists an old idea of Einstein, the so called ”prin-
ciple of relativity of inertia” according to which mass should be produced by
the interaction with the gravitational field [1]. Einstein argued that the iner-
tial mass is only a measure for the resistance of a particle against the relative
acceleration with respect to other particles; therefore, within a consequent
theory of relativity, the mass of a particle should be originated by interaction
with all other particles of the Universe, whereby this interaction should be
the gravitational one which couples to all particles, i.e. to their masses or
energies. He postulated even that the value of the mass of a particle should
go to zero, if one puts the particle in an infinite distance of all the other ones.

This fascinating idea was not very successful within Einstein’s theory of
gravity, i.e. general relativity, although it has caused, that Einstein intro-
duced the cosmological constant in order to construct a cosmological model
with finite space, and that Brans and Dicke developed their scalar-tensor-
theory [2]. But an explanation of the mass does not follow from it until now.

In this paper we will show, that the successful Higgs-field mechanism lies
in the direction of Einstein’s idea of producing mass by gravitational inter-
action; we find, that the Higgs-field as source of the inertial mass has to do
something with gravity [3], i.e. it mediates a scalar gravitational interaction
between the massive particles, however of Yukawa type. This results from
the fact, that the Higgs-field itself becomes massive after symmetry break-
ing. On the other hand, an estimation of the coupling constants shows that
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it may be unprobable that this Higgs-field gravity can be identified with any
experimental evidence. Perhaps its applicability lies beyond the scope of the
present experimental experiences.

2. Gravitational Action of the Higgs-Field.

In a previous publication [3] we have shown approximatively the gravitational
interaction of the Higgs-field between massive fermions. In the present pa-
per we extend our investigation in an exact manner on fermions and bosons.
Due to this reason we perform our calculations within the well established
Glashow-Salam-Weinberg model of electro-weak interaction based on the lo-
calized group SU(2) × U(1), taking into account all families of elementary
particles. For this we start with the following definitions: 1

(2.1) ψi = ψmi =

(
ψli

ψqi

)
, m = l, q

represents the spinorial wave-functions of the i-th familiy (i = 1, ...., Nf ),
wherein

(2.2) ψli = ψli
L + ψli

R

is the leptonic part with

(2.2a) ψli
L =

(
νi

L

ei
L

)
, ψli

R = ei
R,

and

(2.3) ψqi = ψqi
L + ψqi

R

means the part of the quarks with

(2.3a) ψqi
L =

(
ui

L

d
′i

L

)
, ψqi

R =

(
ui

R

d
′i

R

)

and

(2.3b) d
′i = U i

(c)jd
j

1Spinor- and isospin- indices are suppressed.
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as the Cabibbo transformed quark wave-functions. Here the left-handed
fermions ψli

L and ψqi
L are doublets with respect to the localized group SU(2),

whereas the right-handed ones ψli
R and ψqi

R are singlets. Correspondingly the
covariant derivatives take the form:

Dλψ
li
L = (∂λ + ig2W

a
λ τa −

1

2
ig1Bλ)ψ

li
L,

Dλψ
qi
L = (∂λ + ig2W

a
λ τa +

1

6
ig1Bλ)ψ

qi
L ,

Dλψ
li
R = (∂λ − ig1Bλ)ψ

li
R,

(2.4) Dλψ
qi
R = Dλ

(
ui

R

d
′i

R

)
=

{
(∂λ + 2

3
ig1Bλ)u

i
R,

(∂λ − 1
3
ig1Bλ)d

′i
R .

Herein τa are the generators of the group SU(2),W a
λ represent the corre-

sponding gauge-potentials and Bλ is the U(1) gauge-potential with g1 and
g2 as gauge-coupling constants. The covariant gauge-field strengths are given
by the commutators

F(2)µν = F a
(2)µντa =

1

ig2

[
D(2)

µ , D(2)
ν

]
,

(2.5) F(1)µν = F(1)µνY =
1

ig1

[
D(1)

µ , D(1)
ν

]
((1) and (2) refer to the group U(1) andSU(2) respectively). Here Y is the
U(1)-generator of the weak hypercharge in the different representations ac-
cording to (2.4), where we follow the notation of ref. [5] and not of [4]. Finally
we introduce a scalar Higgs-field φ belonging to the fundamental representa-
tion of SU(2); its covariant derivative reads

(2.6) Dλφ = (∂λ + ig2W
a

λ τa +
1

2
ig1Bλ)φ.

Herewith we construct the gauge invariant minimally coupled Lagrange-
density:

(2.7) L = L(ψ) + L(F ) + L(φ),
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where

(2.7a) L(ψ) = i
h̄

2

[
ψLmi

γλDλψ
mi
L + ψRmi

γλDλψ
mi
R

]
+ h.c.,

(2.7b) L(F ) = − h̄

16π
(F a

(2)λµF
λµ

(2)a + F(1)λµF
λµ

(1) )

and

(2.7c) L(φ) =
1

2
(Dλφ)†Dλφ− µ2

2
φ†φ− λ

4!
(φ†φ)2 − kφ†ψRmi

x̂mi
nj
ψ

nj

L + h.c..

(µ2, λ, k real parameters of the Higgs-potential and x̂mi
nj

Yukawa coupling
matrix). The field equations following from Hamilton’s action principle result
in the wave equations for the left and right handed fermions

(2.8a) iγµDµψ
mi

L − k

h̄
x̂†mi

nj
φψ

nj

R = 0,

(2.8b) iγµDµψ
mi

R − k

h̄
φ†x̂mi

nj
ψ

nj

L = 0,

in the Yang-Mills equations

(2.9a) DµF
µλ

(2)a ≡ ∂µF
µλ

(2)a − g2εabcW
b
µF

cµλ
(2) = 4πj λ

(2)a,

(2.9b) ∂µF
µλ

(1) = 4πj λ
(1)

(εabc Levi-Civita symbol) with the current densities

(2.10a) j λ
(2)a = g2ψLmi

γλτaψ
mi

L + i
g2

2h̄

[
φ†τaD

λφ− (Dλφ)†τaφ
]
,

(2.10b) j λ
(1) = g1

[
Y ψLmi

γλψ mi
L + Y ψRmi

γλψ mi
R

]
+ i

g1

4h̄

[
φ†Dλφ− (Dλφ)†φ

]
and in the Higgs-field equation

(2.11) DµD
µφ+ µ2φ+

λ

6
(φ†φ)φ = −2kψRmi

x̂mi
nj
ψ

nj

L .
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Obviously the current densities separate into two gauge-covariant parts
jλ
(2)a(ψ) and jλ

(2)a(φ) as well as jλ
(1)(ψ) and jλ

(1)(φ). In a similar way the
gauge-invariant canonical energy-momentum tensor consists of three gauge-
invariant parts:

(2.12) T µ
λ = T µ

λ (ψ) + T µ
λ (F ) + T µ

λ (φ)

with

(2.12a) T µ
λ (ψ) = i

h̄

2

[
ψLmi

γµDλψ
mi

L + ψRmi
γµDλψ

mi
R

]
+ h.c.,

T µ
λ (F ) = − h̄

4π

[
(F a

(2)λνF
µν

(2)a −
1

4
δ µ
λ F

a
(2)αβF

αβ
(2)a)+

(2.12b) +(F(1)λνF
µν

(1) −
1

4
δ µ
λ F(1)αβF

αβ
(1) )

]
and

T µ
λ (φ) =

1

2

[
(Dλφ)†Dµφ+ (Dµφ)†Dλφ−

(2.12c) −δ µ
λ

{
(Dαφ)†Dαφ− µ2φ†φ− λ

12
(φ†φ)2

}]
.

With respect to the field-equations the conservation laws for energy and
momentum of the whole system of fields are valid:

(2.13) ∂µT
µ

λ = 0.

In view of analyzing the interaction caused by the Higgs-field we in-
vestigate at first the equation of motion for the expectation value of the
4-momentum of the fermionic matter fields (ψ-fields) and the gauge-fields
(F -fields). From (2.12) and (2.13) one finds immediately under neglection of
surface-integrals in the space-like infinity:

(2.14) ∂0

∫ [
T 0

λ (ψ) + T 0
λ (F )

]
d3x = −

∫
∂µT

µ
λ (φ)d3x.
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Insertion of T µ
λ (φ) according to (2.12c) and elimination of the second deriva-

tives of the Higgs-field by the field-equation (2.11) results with the use of the
definitions of the field-strengths F(1)µν and F a

(2)µν in:

∂

∂t

∫ [
T 0

λ (ψ) + T 0
λ (F )

]
d3x =

= k
∫ [

(Dλφ)†ψRmi
x̂mi

nj
ψ

nj

L + ψLmi
x̂†mi

nj
ψ

nj

R Dλφ
]
d3x+

+
i

2

∫ [
g2F

a
(2)µλ

{
φ†τaD

µφ− (Dµφ)†τaφ
}

+

(2.15) +
1

2
g1F(1)µλ

{
φ†Dµφ− (Dµφ)†φ

}]
d3x.

The right hand side represents the expectation value of the 4-force, which
changes the 4-momentum of the ψ-fields and of the F -fields with time. How-
ever, the latter expression can be rewritten with the use of the field-equations
(2.9a) and (2.9b) as follows:

∂µT
µ

λ (F ) = h̄
[
F a

(2)µλ

{
j µ
(2)a(ψ) + j µ

(2)a(φ)
}

+

(2.16) + F(1)µλ

{
j µ
(1)(ψ) + j µ

(1)(φ)
} ]

.

Herewith one obtains instead of (2.15):

∂

∂t

∫
T 0

λ (ψ)d3x =
∫
h̄
[
F a

(2)µλj
µ

(2)a(ψ) + F(1)µλj
µ
(1)(ψ)

]
d3x+

(2.17) +k
∫ [

(Dλφ)†ψRmi
x̂mi

nj
ψ

nj

L + ψLmi
x̂†mi

nj
ψ

nj

R Dλφ
]
d3x,

where on the right hand side we have the 4-force of the gauge-fields and the
Higgs-field, both acting on the matter field and changing its 4-momentum.
Evidently, the gauge-field strengths couple to the gauge-currents j µ

(2)a(ψ) and

j µ
(1)(ψ), i.e. to the gauge-coupling constants g1 and g2 according to (2.10a)

and (2.10b), whereas the Higgs-field strength (gradient of the Higgs-field)
couples to the fermionic mass-parameter k only (c.f. [4]). This fact points to
a gravitational action of the scalar Higgs-field.
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3. Field-Equations of Higgs-Gravity.

For demonstrating the gravitational interaction explicitly we perform at first
the spontaneous symmetry breaking, because in the case of a scalar gravity
only massive particles should interact. 2 For this µ2 < 0 must be valid,
and according to (2.11) and (2.12c) the ground-state φ0 of the Higgs-field is
defined by

(3.1) φ †
0 φ0 = v2 =

−6µ2

λ
,

which we resolve as

(3.2) φ0 = vN

with

(3.2a) N †N = 1, ∂λN = 0.

The general Higgs-field φ is different from (3.2) by a local unitary transfor-
mation:

(3.3) φ = ρUN, U †U = 1

with

(3.3a) φ†φ = ρ2, ρ = v(1 + ϕ),

where ϕ represents the real valued excited Higgs-field. Now we use the pos-
sibility of a unitary gauge transformation which is inverse to (3.3):

(3.4) φ′ = U−1φ, ψ′ = U−1ψ, F ′
µν = U−1FµνU,

so that

(3.4a) φ′ = ρN

is valid, and perform in the following all calculations in the gauge (3.4) (uni-
tary gauge).

2The only possible source of a classical scalar gravity is the trace of the energy-
momentum tensor.

7



Using (3.2) up to (3.4a) the field equations (2.8a) through (2.11) take the
form, avoiding the strokes introduced in (3.4):

(3.5a) iγµDµψ
mi
L − 1

h̄
(1 + ϕ)m̂mi

nj
ψ

nj

R = 0,

(3.5b) iγµDµψ
mi
R − 1

h̄
(1 + ϕ)m̂mi

nj
ψ

nj

L = 0,

(3.6a) DµF
µλ

(2)a +
1

h̄2 (1 + ϕ)2
[
M2

(2)abW
bλ +M2

(1,2)aB
λ
]

= 4πj λ
(2)a(ψ),

(3.6b) ∂µF
µλ

(1) +
1

h̄2 (1 + ϕ)2
[
M2

(1,2)aW
aλ +M2

(1)B
λ
]

= 4πj λ
(1)(ψ),

∂µ∂
µϕ+

M2

h̄2 ϕ+
1

2

M2

h̄2 (3ϕ2 + ϕ3) =

= − 1

v2

[
ψLmi

m̂mi
nj
ψ

nj

R + ψRmi
m̂mi

nj
ψ

nj

L −

(3.7) − 1

4πh̄

{
M2

(2)abW
a
λW

bλ + 2M2
(1,2)aW

a
λB

λ +M2
(1)BλB

λ
}

(1 + ϕ)
]
,

wherein

(3.7a) M2 = −2µ2h̄2, (µ2 < 0)

is the square of the mass of the Higgs-field (ϕ-field) and

(3.8) m̂mi
nj

= kv(N †x̂mi
nj

+ x̂†mi
nj
N)

is the mass-matrix of the fermionic ψ-fields, which must be adjusted to the
observed mass-values of the fermions. The matrices of the mass-squares of
the gauge fields are defined by

(3.9a) M2
(2)ab = 4πh̄v2g2

2N
†τ(aτb)N = M2

W δab,
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(3.9b) M2
(1,2)a = 4πh̄v2g1g2

1

2
N †τaN = −M2

W

g1

g2

δ 3
a ,

(3.9c) M2
(1) = πh̄v2g2

1 = M2
W (

g1

g2

)2,

where N =
(

0
1

)
is chosen and

(3.10) MW =
√
πh̄vg2.

Diagonalization of (3.9a) up to (3.9c) yields the four eigenvalues:

(3.11) M2
W ; M2

W ; M2
Z = πh̄v2(g2

1 + g2
2); 0

with the corresponding eigenvectors:

(3.11a) W 1
λ; W 2

λ; Zλ = cWW
3
λ − sWBλ; Aλ = sWW

3
λ + cWBλ,

wherein cW = cos θW and sW = sin θW (θW Weinberg-angle). The field-
strengths belonging to (3.11a) are given by:

F µλ
(W 1) = F 1µλ

(2) ; F µλ
(W 2) = F 2µλ

(2) ;

F µλ
(Z) = cWF

3µλ
(2) − sWF

µλ
(1) ;

(3.12) F µλ
(A) = sWF

3µλ
(2) + cWF

µλ
(1) .

Herewith we obtain from (3.6a) and (3.6b) in view of (3.9a) through (3.11)
the gauge-field equations: 3

(3.13a) DµF
µλ

(W 1,2) + (1 + ϕ)2
(
MW

h̄

)2

W 1,2λ = 4πj1,2λ
(2) (ψ),

(3.13b) DµF
µλ

(Z) + (1 + ϕ)2
(
MZ

h̄

)2

Zλ = 4πj λ
(Z)(ψ),

3The covariant derivative in (3.13a, b, c) is defined by the covariant derivative of the
right hand side of (3.12) according to (2.9a).
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(3.13c) DµF
µλ

(A) = 4πj λ
(A)(ψ)

with the matter current densities corresponding to (3.12):

(3.14a) j λ
(Z)(ψ) = cW j

3λ
(2) (ψ)− sW j

λ
(1)(ψ),

(3.14b) j λ
(A)(ψ) = sW j

3λ
(2) (ψ) + cW j

λ
(1)(ψ).

In the same way we find from (3.7) for the Higgs-field ϕ:

∂µ∂
µϕ+

M2

h̄2 ϕ+
1

2

M2

h̄2 (3ϕ2 + ϕ3) =

= − 1

v2

[
ψLmi

m̂mi
nj
ψ

nj

R + ψRmi
m̂mi

nj
ψ

nj

L −

(3.15) − 1

4πh̄

{
M 2

W (W 1
λW

1λ +W 2
λW

2λ) +M2
ZZλZ

λ
}

(1 + ϕ)
]
.

Obviously, in the field-equations (3.5a), (3.5b), (3.13a) through (3.13c)
and (3.15) the Higgs-field ϕ plays the role of an (attractive) scalar gravita-
tional potential between the massive particles: According to equ. (3.15) the
source of ϕ is the mass of the fermions and of the gauge bosons W 1,2 and Z,
4 whereby this equation linearized with respect to ϕ is a potential equation
of Yukawa-type. Accordingly the potential ϕ has a finite range

(3.16) l = h̄/M

given by the mass of the Higgs-particle, and v−2 has the meaning of the
gravitational constant, so that

(3.17) v−2 = 4πGγ

is valid, where G is the Newtonian gravitational constant and γ a dimension-
less factor, which compares the strength of the Newtonian gravity with that
of the Higgs-field and which can be determined only experimentally, see sect.

4The second term on the right hand side of equ. (3.15) is positive with respect to the
signature of the metric.
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5. On the other hand, the gravitational potential ϕ acts back on the mass of
the fermions and of the gauge-bosons according to the field equations (3.5a),
(3.5b) and (3.13) through (3.13c). Simultaneously the equivalence between
inertial and passive as well as active gravitational mass is guaranteed. This
feature results from the fact that by the symmetry breaking only one type
of mass is introduced. Evidently, the neutrinos νi

L and the photon A do not
participate in this gravitational interaction.

4. Gravitational Force and Potential Equation.

At first we consider the potential equation from a more classical standpoint.
With respect to the fact of a scalar gravitational interaction we rewrite equa-
tion (3.15) with the help of the trace of the energy-momentum tensor, be-
cause this should be the only source of a scalar gravitational potential within
a Lorentz-covariant theory. From (2.12) and (2.12a) through (2.12c) one finds
after symmetry breaking:

(4.1) T µ
λ = T µ

λ (ψ) + T µ
λ (W,Z,A) + T µ

λ (ϕ)

with T µ
λ (ψ) given by (2.12a) and

T µ
λ (W,Z,A) = T µ

λ (F ) +
1

4πh̄

[
M2

W

{
(W 1

λW
1µ +W 2

λW
2µ)−

(4.1a) −1

2
δ µ
λ (W 1

αW
1α +W 2

αW
2α)
}

+M2
Z

{
ZλZ

µ − 1

2
δ µ
λ ZαZ

α
} ]

(T µ
λ (F ) according to (2.12b)) as well as

(4.1b)

T µ
λ (ϕ) = v2

[
∂λϕ∂

µϕ− 1

2
δ µ
λ

{
∂αϕ∂

αϕ+
M2

4h̄2 (1 + ϕ)2(1− 2ϕ− ϕ2)

}]
.

From this it follows immediately using the field equations (3.5a) and (3.5b):

(4.2) T = T λ
λ = T (ψ) + T (W,Z,A) + T (ϕ)

with

(4.2a) T (ψ) =
[
ψLmi

m̂mi
nj
ψ

nj

R + ψRmi
m̂mi

nj
ψ

nj

L

]
(1 + ϕ),
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T (W,Z,A) = T (W,Z) = − 1

4πh̄

[
M2

W (W 1
λW

1λ+

(4.2b) +W 2
λW

2λ) +M2
ZZλZ

λ
]
(1 + ϕ)2

and

(4.2c) T (ϕ) = v2

[
M2

2h̄2 (ϕ4 + 4ϕ3 + 4ϕ2 − 1)− ∂λϕ∂
λϕ

]
.

In the appendix it is shown that T (ψ) separates in total analogy to T (W,Z)
into the masses of the single fermions:

(4.2a′) T (ψ) =
∑

i

(meieie
i +muiuiu

i +mdidid
i)(1 + ϕ).

Comparing (4.2a) and (4.2b) with the right hand side of the Higgs-field equa-
tion (3.15) one finds that the source of the potential ϕ is given by the first
two terms of the trace (4.2). In this way we find using (3.17):

∂µ∂
µϕ+

M2

h̄2 ϕ+
1

2

M2

h̄2 (3ϕ2 + ϕ3) =

(4.3) = −4πGγ(1 + ϕ)−1(T (ψ) + T (W,Z)).

In the linearized version (with respect to ϕ) equ. (4.3) represents a potential
equation for ϕ of Yukawa-type with the trace of the energy-momentum tensor
of the massive fermions and the massive gauge-bosons W 1,2 and Z as source.

Finally we investigate the gravitational force caused by the Higgs-field
more in detail. Insertion of the symmetry breaking according to (3.1) up to
(3.4a) into the first integral of the right hand side of (2.15) yields:

Kλ = k
[
(Dλφ)†ψRmi

x̂mi
nj
ψ

nj

L + ψLmi
x̂†mi

nj
ψ

nj

R Dλφ
]

=

= (ψRmi
m̂mi

nj
ψ

nj

L + ψLmi
m̂mi

nj
ψ

nj

R )∂λϕ+

(4.4) +v(1 + ϕ)
[
(DλN)†kψRmi

x̂mi
nj
ψ

nj

L + kψLmi
x̂†mi

nj
ψ

nj

R DλN
]
.
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Substitution of the conglomerate kψRmi
x̂mi

nj
ψ

nj

L by the left hand side of the
field equation (2.11) results with the use of (3.3a) and (3.4a) in:

Kλ =
[
ψLmi

m̂mi
nj
ψ

nj

R + ψRmi
m̂mi

nj
ψ

nj

L −

− 1

4πh̄

{
M2

W (W 1
αW

1α +W 2
αW

2α) +M2
ZZαZ

α
}

(1 + ϕ)
]
∂λϕ−

− 1

4πh̄
∂µ

[
(1 + ϕ)2

{
M2

W (W 1
λW

1µ+ W 2
λW

2µ−

−1

2
δ µ
λ

[
W 1

αW
1α +W 2

αW
2α
]
) + M2

Z(ZλZ
µ − 1

2
δ µ
λ ZαZ

α) }
]
+

+i
v2

2
(1 + ϕ)2

[
g2F

a
(2)µλ

{
N †τaD

µN − (DµN)†τaN
}

+

(4.5) + g1F(1)µλ

{
N †DµN − (DµN)†N

}]
.

By insertion of (4.5) into the right hand side of (2.15) the last brackets of (4.5)
and (2.15) cancel out, whereas the second bracket of (4.5) can be combined
with ∂µT

µ
λ (F ) to ∂µT

µ
λ (W,Z,A) according to (4.2b). In this way we obtain

neglecting surface integrals in the space-like infinity:

∂

∂t

∫ [
T 0

λ (ψ) + T 0
λ (W,Z,A)

]
d3x =

=
∫ [

ψLmi
m̂mi

nj
ψ

nj

R + ψRmi
m̂mi

nj
ψ

nj

L −

(4.6) − 1

4πh̄

{
M2

W (W 1
αW

1α +W 2
αW

2α) +M2
ZZαZ

α
}

(1 + ϕ)
]
∂λϕd

3x.

In total analogy to the procedure yielding the potential equation (4.3) we
substitute the bracket of the 4-force in (4.6) by the traces T (ψ) and T (W,Z)
given by (4.2a) and (4.2b) respectively; so we find:

∂

∂t

∫ [
T 0

λ (ψ) + T 0
λ (W,Z,A)

]
d3x =

13



(4.7) =
∫

(1 + ϕ)−1
[
T (ψ) + T (W,Z)

]
∂λϕd

3x.

Considering the transition from equ. (2.15) to (2.17) we can express the
time derivative of the 4-momentum of the gauge-fields by a 4-force acting
on the fermionic matter currents. Restricting this procedure to the massless
gauge-field Aλ (photon) we get from (4.7):

∂

∂t

∫ [
T 0

λ (ψ) + T 0
λ (W,Z)

]
d3x =

∫
h̄F(A)λµj

µ
(A)(ψ)d3x+

(4.8) +
∫

(1 + ϕ)−1 [T (ψ) + T (W,Z)] ∂λϕd
3x.

Herein the first term of the right hand side describes the 4-force of the mass-
less gauge-boson acting on the matter fields, i.e. the electromagnetic Lorentz-
force coupled by the electric charge, see (3.14b):

(4.8a) e = sWg2 = cWg1.

The second term (identical with the right hand side of (4.7)) is the attractive
gravitational force on the masses of the fermions and of the gauge-bosons
W 1,2 and Z, which are simultaneously the source of the Higgs-potential ϕ
according to (4.3). This behaviour is exactly that of classical gravity, coupling
to the mass ( ≡ energy) only and not to any charge. However, the qualitative
difference with respect to the Newtonian gravity consists besides the non-
linear terms in (4.3) in the finite range of ϕ caused by the Yukawa-term.

5. Final Remarks.

In the end we point to some interesting features of our result. First of all we
note, that in view of the right hand side of (4.7) it is appropriate to define

(5.1) ln(1 + ϕ) = χ

as new gravitational potential, so that the momentum law reads:

∂

∂t

∫ [
T 0

λ (ψ) + T 0
λ (W,Z,A)

]
d3x =

14



(5.2) =
∫

[T (ψ) + T (W,Z)] ∂λχd
3x.

Then the non-linear terms concerning ϕ in (4.3) can be expressed by T (ϕ) ≡
T (χ) according to (4.2c). In this way the field equation for the potential χ
(excited Higgs-field) takes the very impressive form:

(5.3) ∂µ∂
µe2χ +

M2

h̄2 e
2χ = −8πGγ [T (ψ) + T (W,Z) + T (χ)] .

Equations (5.2) and (5.3) are indeed those of scalar gravity with self-
interaction in a natural manner. For the understanding of the Higgs-field it
may be of interest, that the structure of equation (5.3) exists already before
the symmetry breaking. Considering the trace T of the energy-momentum
tensor (2.12) one finds with the use of the field-equations (2.8a), (2.8b) and
(2.11):

(5.4) ∂µ∂
µ(φ†φ) + (

M

h̄
)2(φ†φ) = −2T

withM2 = −2µ2h̄2. Accordingly, the Yukawa-like self-interacting scalar grav-
ity of the Higgs-field is present within the theory from the very beginning.
Equation (5.4) possesses an interesting behaviour with respect to the sym-
metry breaking. From the second term on the left hand side there results
in view of (3.1) in the first step a cosmological constant M2v2/h̄2; but this
is compensated exactly by the trace of the energy-momentum tensor of the
ground-state. In our opinion this is the property of the cosmological constant
at all, also in general relativity.

Furthermore we emphasize that the gravitational action of the Higgs-field
is not restricted to the Glashow-Salam-Weinberg model, but it is valid in all
cases of mass producing by symmetry breaking via the Higgs-mechanism [6],
e.g. also in the GUT-model. However, because in (3.16) the mass M is that of
the Higgs-particle, the range l of the potential ϕ should be very short, so that
until now no experimental evidence for the Higgs-gravity may exist, at least
in the macroscopic limit. For this reason it also appears unprobable, that it
has to do something with the non-Newtonian gravity currently discussed as
so called fifth force [7].

Finally, the factor γ in (3.17) can be calculated from (3.10) by the use of
the mass of the W-bosons and the value of the gauge-coupling constant g2;
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one finds:

(5.5) γ = h̄g2
2/4GM

2
W =

1

2
g2
2(
MP

MW

)2 = 2× 1032

(MP Planck mass). Consequently, the Higgs-gravity represents a relatively
strong scalar gravitational interaction between the massive elementary par-
ticles, however with extremely short range and with the essential property
of quantizability. If any Higgs-field exists in nature, this type of gravity is
present.

The expression (5.5) shows, that in the case of a symmetry breaking
where the bosonic mass is of the order of the Planck mass, the Higgs-gravity
approaches the Newtonian gravity, if the mass of the Higgs-particle is suffi-
ciently small. In this connection the question arises, following Einstein’s idea
of relativity of inertia, if it is possible to construct a tensorial quantum theory
of gravity with the use of the Higgs-mechanism, leading at last to Einstein’s
gravitational theory in the classical macroscopic limit.
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Appendix: In order to show the separation of T (ψ) into the single
fermionic masses it is necessary to specify the fermionic mass-matrix as fol-
lows (without suppression of the SU(2) indices I, J, ...): 5

(A1) m̂mi
nj

= m̂Imi
Jnj

=
∑
k

mImk
δI

Jδ
m
n(U Im

(c) )i
k(U

Im

(c) )−1k
j

where

(A2) (U Im

(c) )
i
k =

{
U i

(c)k if (I,m) = (d′, q),

δi
k otherwise

with the Cabibbo-matrix U i
(c)k according to (2.3b). Insertion of (A1) into the

right hand side of (4.2a) yields:

ψLmi
m̂mi

nj
ψ

nj

R + ψRmi
m̂mi

nj
ψ

nj

L =

(A3)

=
∑

i

[
mei(eRi

e i
L + eLi

e i
R) +mui(uRi

u i
L + uLi

u i
R) +mdi(dRi

d i
L + dLi

d i
R)
]
,

which immediately goes over into the expression (4.2a’).
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