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Abstract

The orbits of a relativistic charged body in a static, spherically symmetric electrical

field are calculated and classified in the classical theory. Contrary to the non-

relativistic problem, we find that there is a limiting minimal value for the angular

momentum, Lc. Should the actual angular momentum of a charged test body be

lower than this limit, the test particle will spiral into the central point charge instead

of having (preceding) Keplerian orbits.



Introduction

Within Dirac’s theory, or Sommerfeld’s semiclassical theory for the fine-structure of

the hydrogene atom it is well known that the ground state will become unstable for

nuclear charges (of hydrogene-like ions) Z > 1/α, see e.g. Greiner 1981. It is the aim

of this paper to show, that this phenomenon is not a typical quantum mechanical

one, but that also in the classical theory of a relativistic charged point particle within

a static Coulomb field there exist non-stable orbits connected with the existence of

a critical angular momentum Lc; should the actual angular momentum of the point

particle be lower than Lc, the particle will spiral into the central point charge

independently from its energy (unstable orbit), while the non-relativistic treatment

yields Keplerian orbits in any case (ellipses, parabola and hyperbola). As in the

quantum mechanical case mentioned above we neglect the radiative reaction force

on the charged point particle.

1 Lagrange function and the equation of motion

Neglecting the radiative back reaction, the Lagrange function of a relativistic point

particle (rest mass m0, charge e) in an underlying electromagnetic potential Aµ is

given by

L = −m0c
2
√

ηµνvµvν − e

c
vµAµ , (1)

(vµ: timelike 4-velocity, ηµν = diag(+1,−1,−1,−1)). In the following, the mag-

netic potential Ai, i = 1 . . . 3 is assumed to vanish, and A0 = cΦ where Φ is the

electrostatic potential and a function of the radial coordinate r only. Then the

Lagrange function (1) simplifies to

L = −m0c
2

√
1− v2

c2
− eΦ(r) . (2)
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where v is the absolute value of the 3-velocity. Because of the spherical symmetry

of Φ there exists angular momentum conservation, and consequently the motion

of the particle will take place in a plane orthogonal with respect to the angular

momentum vector; we choose as this plane the x–y-plane.

Using plane polar coordinates r and ϕ, v2 simplifies to

v2 = ṙ2 + r2ϕ̇2 , (3)

and we can derive the Euler-Lagrange equations for r(t) and ϕ(t). In case of ϕ we

have, since ∂L
∂ϕ
≡ 0, a conserved angular momentum L, i.e.

L =
m0r

2ϕ̇√
1− v2

c2

= const . (4)

Inserting v2 from (3) and resolving for ϕ̇ we get:

ϕ̇ =
c

r

√√√√√ 1− ṙ2/c2

1 +
(

m0cr
L

)2 (5)

Since L is not explicitely dependent on t we have, in addition, energy conservation,

i.e. Hamilton’s function is a constant; this results in:

E =
m0c

2√
1− v2

c2

+ eΦ = const (6)

Inserting (3) and resolving for ṙ yields

ṙ = c

√√√√1−
(

m0c2

E − eΦ

)2

−
(

rϕ̇

c

)2

. (7)

Eliminating ϕ̇ by eq. (5) one obtains after a short calculation:

ṙ = c

√√√√1−
(

m0c2

E − eΦ

)2 (
1 +

(
L

m0cr

)2
)

. (8)
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Herewith equation (5) takes the form:

ϕ̇ =
Lc2

(E − eΦ) r2
(9)

By combination of (7) and (9) we get the differential equation for calculating the

orbit, i.e. r(ϕ):

dr

dϕ
=

ṙ

ϕ̇
= r2m0c

L

√√√√(E − eΦ

m0c2

)2

− 1−
(

L

m0cr

)2

(10)

Substituting r = 1/s, this may be rewritten as

ds

dϕ
= −m0c

L

√√√√(E − eΦ

m0c2

)2

− 1−
(

L

m0c

)2

s2 . (11)

For the Coulomb potential Φ = Q/r = Qs we get finally:

ds

dϕ
= −m0c

L

√√√√[( E

m0c2

)2

− 1

]
− 2

E

m0c2

eQ

m0c2
s−

[(
L

m0c

)2

−
(

eQ

m0c2

)2
]
s2 (12)

Looking now for a more suggestive form of the orbital differential equation, one

can take the square of this equation, differentiate with respect to ϕ, and divide by

2dϕ/ds. Thus one obtains

d2s

dϕ2
= −

[
1−

(
eQ

cL

)2
]

(s± s0) (13)

with

s0 =

E
m0c2

|eQ|
m0c2

(
m0c
L

)2

1−
(

eQ
cL

)2 (14)

The upper sign in (13) applies if e and Q have same sign and the lower sign otherwise.

Depending on the value of L, equation (13) has 3 different types of solutions, namely

1. for L > Lc: periodic solutions (trigonometric functions) in ϕ,

2. for L = Lc: a limiting algebraic case,
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3. and for L < Lc: nonperiodic (hyperbolic and exponential functions),

where the “critical” angular momentum Lc is given by

Lc =
∣∣∣∣eQc

∣∣∣∣ . (15)

For easier processing, it appears appropriate to substitute three new constants for

E, L, and Q (or Lc):

u :=
E

m0c2
, l :=

L

m0c
, lc :=

Lc

m0c
=
|eQ|
m0c2

, (16)

where u is a dimensionless “specific energy”, while the “specific angular momentum”

l and the “specific critical angular momentum” lc have the dimension of a length.

The length lc gives the distance at which the absolute value of the electric potential

energy, eQ/r, of the test particle (i.e., between the charges e and Q) gets equal to

te rest energy m0c
2 of the particle. This demonstrates the special-relativistic nature

of the effects where lc or Lc plays a role. Then eq. (12) reads:

ds

dϕ
= −1

l

√
(u2 − 1)∓ 2ulcs−

(
l2 − lc

2
)
s2 (17)

The constant s0, eq. (14) takes the value

s0 =
ulc

l2 − lc
2 . (18)

2 Integration of the equation of motion

2.1 Large angular momentum L > Lc: Keplerian orbits

In case l > lc or L > Lc = |eQ|/c we can rewrite equation (17) in the following form

using (18):

ds

dϕ
= −1

l

√
(u2 − 1)−

(
l2 − lc

2
)

(s2 ± 2s0s) (19)
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After quadratic completion we obtain

ds

dϕ
= −1

l

√[
(u2 − 1) +

(
l2 − lc

2
)
s0

2
]
−
(
l2 − lc

2
)

(s± s0)
2

= −1

l

√√√√√√
[

u2l2

l2 − lc
2 − 1

]
·

1−
(
l2 − lc

2
)2

(s± s0)
2

(u2 − 1) l2 + lc
2

 (20)

With respect to the radicand we can substitute

s = ∓s0 +

√
(u2 − 1) l2 + lc

2

l2 − lc
2 cos α (21)

which yields from (20):

dα

dϕ
=

√√√√1−
(

lc
l

)2

=⇒ α =

√√√√1−
(

lc
l

)2

(ϕ− ϕ0) . (22)

Combining (21) and (22) we obtain for r(ϕ):

r(ϕ) =
r0

∓1 + ε cos

[√
1−

(
lc
l

)2
(ϕ− ϕ0)

] (23)

where

ε =

√
(u2 − 1) l2 + lc

2

ulc
=

√√√√ 1

u2
+

(
l

lc

)2

−
(

l

ulc

)2

(24)

is the numerical excentricity. The upper sign applies in the repulsive and the lower

one in the attractive case.

The solution (23) represents a preceding Keplerian orbit, i.e. a preceding ellipse,

parabola, or hyperbola, depending on the value of ε < 1, = 1, > 1 respectively,

where in case of repulsive force ε > 1 must hold because of r ≥ 0. In case of

bound states it is a periodic orbit with period 2π/

√
1−

(
lc
l

)2
> 2π; thus we have a

progressive periapsis shift of

δϕ = 2π

 1√
1−

(
lc
l

)2
− 1

 (25)
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per cycle caused by the critical value of lc. For large values of L or l, this expression

can be approximated by

δϕ ≈ π

(
lc
l

)2

= π

(
|eQ|
Lc

)2

(26)

In case of scattering states ε > 1, we have preceding hyperbola, which means that

the asymptotes, calculated from (23), are given by

ϕ− ϕ0 = ± 1√
1−

(
lc
l

)2
arccos

(
∓1

ε

)
(27)

This preceding hyperbola does not coincide with an exact hyperbola, with another

excentricity. Instead, its asymptotes, together with its apsid line, precede progres-

sively while the particle moves around the center, at exactly the same rate per

passed angle as for the ellipses in the bound above, so that from approach to escape

the trajectory has preceded by a total of

δϕ =

 1√
1−

(
lc
l

)2
− 1

 · 2 arccos
(
∓1

ε

)
(28)

If the specific angular momentum l comes close to the limit lc, the angle δϕ will

become larger and larger, so that the particle may orbit the central charge one or

more times, before it escapes again to infinity (see Fig. 1).

Such types of orbits are also known from general relativity, where both massive

and massless test bodies with small angular momentum have similar trajectories

within Schwarzschild’s metrical gravitational field (see e.g. Laue 1965 and Misner,

Thorne, Wheeler 1973). However, as stated above our results are a purely special

relativistiv effect, while in the Schwarzschild case the non-linear structure of the

gravitational field has an additional impact.
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2.2 The limiting case L = Lc: Quadratic spiral trajectories

For L = Lc, i.e. l = lc (corresponding to s0 = ∞) eq. (17) takes the form

ds

dϕ
=

√
2u

lc
(s1 ∓ s) (29)

with

s1 =
u2 − 1

2ulc
(30)

(the upper sign is valid for repulsive forces, the lower one for the attractive case).

The solution reads

s =
u

2lc
(ϕ− ϕ0)

2 ± s1 ; (31)

according to (30), s1 is positive, 0, or negative as u > 1, = 1, or < 1 respectively.

Then the trajectory is given by

r = ∓ r0

a (ϕ− ϕ0)
2 ∓ 1

(32)

where

r0 =
2ulc

|u2 − 1|
, a =

u2

|u2 − 1|

Since r must be positive, it is valid for

• u < 1 and attractive forces: The trajectory has a maximal distance r0 from the

origin at ϕ = ϕ0 and spirals quadratically into the origin as |ϕ− ϕ0| −→ ∞.

• u > 1 and attractive forces:

|ϕ− ϕ0| > 1/
√

a =

√
u2 − 1

u
. (33)

The trajectory comes from infinity at |ϕ− ϕ0| = 1/
√

a, and spirals quadrati-

cally into the origin for |ϕ− ϕ0| −→ ∞.
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• u > 1 and repulsive forces:

|ϕ− ϕ0| < 1/
√

a =

√
u2 − 1

u
. (34)

In this case, r0 = r(ϕ = ϕ0) represents the minimal distance from the central

charge and for |ϕ− ϕ0| −→ 1/
√

a the trajectory runs out to infinity without

and spiralling.

No solution exists in the repulsive case for u < 1. For u = 1 (s1 = 0), we have only

a solution in the attractive case, namely

s = (u/2lc)(ϕ− ϕ0)
2 , (35)

which comes from infinity at ϕ = ϕ0, and spirals quadratically into the origin with

|ϕ− ϕ0| −→ ∞.

2.3 Small angular momentum L < Lc: Exponential spiral

orbits

In the last case L < Lc, i.e. l < lc, we can rewrite eq. (17) as(
ds

dϕ

)2

l2 =

[
1 +

u2l2

lc
2 − l2

]{
(l2c − l2)

2

(u2 − 1) l2 + lc
2 (s∓ s0)

2 − 1

}
(36)

(s0 according to (18) and upper sign for repulsive, the lower one for attractive

forces). In the following, it is convenient to introduce the abbrevation

b =

√√√√( lc
l

)2

− 1 (37)

which is a positive real constant. We discuss the solutions of this equation of

motion for the attractive case (eQ < 0) first. Then we have to distinguish three

cases, corresponding to the value of the “specific energy” constant u:
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a. u < 1, i.e. sum of kinetic and potential energy negative:

In this case the solution of (36) reads (see Fig. 2)

r =
r0

1 + a {cosh [b (ϕ− ϕ0)]− 1}
(38)

where

r0 =
lc

2 − l2√
lc

2 − (1− u2) l2 − ulc
> 0 (39)

a =
1

1− ulc√
lc

2 − (1− u2) l2

> 1 . (40)

The trajectory described by equation (38) has its greatest distance r0 from the origin

at ϕ = ϕ0, and spirals exponentially into the central charge for both ϕ −→ ∞ and

ϕ −→ −∞, as

r −→ 2r0

a
e−b|ϕ−ϕ0| . (41)

b. u = 1, i.e. sum of kinetic and potential energy zero:

The solution of (36) takes the form (Fig. 3)

r =
r1

cosh [b (ϕ− ϕ0)]− 1
(42)

with

r1 =
lc

2 − l2

lc
> 0 (43)

The trajectory approaches infinity for ϕ = ϕ0 and spirals exponentially into the

origin for ϕ −→∞ as

r −→ 2r1e
−b|ϕ−ϕ0| . (44)

c. u > 1, i.e. sum of kinetic and potential energy positive:

Equation (36) has the solution (Fig. 4)

r =
r0

a {cosh [b (ϕ− ϕ0)]− 1} − 1
(45)
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with

r0 =
lc

2 − l2

ulc −
√

lc
2 − (1− u2) l2

> 0 (46)

a =
1

ulc√
lc

2 − (1− u2) l2
− 1

> 0 (47)

Because the distance r must be always positive, the range of ϕ is restricted so that

the denominator in (45) remains positive:

|ϕ− ϕ0| >
1

b
arcosh

(
1 +

1

a

)
= ϕ∞ (48)

The trajectory does not enter the ϕ interval ϕ0 − ϕ∞ < ϕ < ϕ0 + ϕ∞. It comes

from infinity at

ϕ = ϕ0 ± ϕ∞

and spirals exponentially into the origin for |ϕ− ϕ0| −→ ∞ as

r −→ 2r0

a
e−b|ϕ−ϕ0| , (49)

i.e. exactly as in the first case.

In a second step we discuss the motion for the repulsive case. For this, the

solution of (36) reads

r =
r0

1− a {cosh [b (ϕ− ϕ0)]− 1}
(50)

with

r0 =
lc

2 − l2

ulc −
√

lc
2 − (1− u2) l2

(51)

a =
1

ulc√
lc

2 − (1− u2) l2
− 1

. (52)
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Because of r > 0 it follows that u > 1 must hold. The trajectory has a minimal

distance r0 = r(ϕ0) and goes to infinity without any spiralling for

|ϕ− ϕ0| −→ ϕ∞ =
1

b
arcosh

 ulc√
lc

2 − (1− u2) l2

 ;

it never leaves the ϕ interval ϕ0 − ϕ∞ < ϕ < ϕ0 + ϕ∞. It comes from the infinity

at ϕ = ϕ0 − ϕ∞, has its closest approach, r = r0, at ϕ = ϕ0, and leaves again to

infinity at ϕ = ϕ0 − ϕ∞.

3 Summary

The different classes of orbits discussed above for the special relativistic Coulomb

problem are summarized in the following tables:
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Attractive case:

E < m0c
2 E = m0c

2 E > m0c
2

bound states scattering states

L > Lc preceding ellipse preceding parabola preceding hyperbola

eq. (23), 0 ≤ ε < 1 eq. (23), ε = 1 eq. (23), ε > 1

L = Lc quadratical spiral quadratic spiral quadratic spiral from

from maximal r0 from infinity infinity into the center,

into the center, into the center, eq. (32), ”+” before RHS,

eq. (32), lower signs eq. (35) ”−” in denominator

L < Lc exponential spiral exponential spiral exponential spiral

from maximal r0 from infinity from infinity

into the center, into the center, into the center,

eq. (38), Fig. 2 eq. (42), Fig. 3 eq. (45), Fig. 4

Repulsive case:

E > m0c
2

scattering states

L > Lc preceding repulsive hyperbola

eq. (23), upper sign, ε > 1

L = Lc quadratic approach to and escape from

minimal r0 to infinity

eq. (32), upper signs

L < Lc exponential approach to and escape from

minimal r0 to infinity

eq. (50)
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Obviously, in classical special-relativistic electrostatics, there exists a limiting

angular momentum: If a charged body which is attracted by the electric field has

less angular momentum than this critical value, it will spiral into the source, and

this already without taking into account the radiative energy losses. The physical

meaning is that low angular momentum test charges get so close to the central

charge, i.e. into such a strong field, that they are accelerated to relativistic velocities

and can then no more escape.

Besides that this result is of interest on its own, one may look for applications,

which can be expected in that part of physics where special relativity plays a role,

while quantum effects stay weak. However with respect to applications the radiative

back reaction will be important and must be taken into account. This will be done in

a subsequent paper. Nevertheless we will give an estimation of the critical situation

discussed above: For electrons as test particles, it is necessary to concentrate a

charge of

Q = lc ·
m0c

2

e
≈ 4.2 · 1012e · (lc/cm)

in a volume of a radius smaller than lc, i.e. for a 1-cm radius, more than 4 · 1012

elementary charges had to be stabilized and localized in this volume, generating a

voltage at its surface which corresponds to the electron’s m0 c2/e, i.e. more than

5.11 ·105 V ; “classical” test bodies would require even a much higher central charge.

It may be difficult to realize such a densely packed charge. However it is the hope

that the radiative reaction force will improve the experimental conditions.
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Figure Captions:

Fig. 1 The test particle may orbit the central charge one (a) or more times (b),

before it escapes again to infinity, if the angular momentum L approaches Lc.

Fig. 2 Orbits for L < Lc, u < 1 (bound states)

Fig. 3 Orbits for L < Lc, u = 1 (limiting case)

Fig. 4 Orbits for L < Lc, u > 1 (scattering states)


