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Abstract
The combination of Brans and Dicke’s idea of a variable gravitational

constant with the Higgs-field mechanism results in a renormalizable theory
of gravity. Einstein’s theory is realized after symmetry breaking in the neigh-
bourhood of the Higgs-field ground-state.

There exist today in the literature two fundamental scalar fields connected
with the mass problem. First of all Brans and Dicke [1] introduced a scalar
field with the intention following Mach’s principle [2], that the active as well
as passive gravitational mass m0

√
G, that means the gravitational ”constant”

G, is not a constant but a function determined by the other particles of the
Universe. In this way also the problem of Dirac’s large cosmological numbers
should be solved. Secondly, in elementary particle physics the inertial mass
m0 is generated with respect to the gauge invariance by the interaction with
the scalar Higgs-field, the source of which is also given by the particles in
the Universe [3]. Because of the identity of gravitational and inertial mass
(equivalence principle) it seems to be meaningful, if not even necessary to
identify these two approaches. Then the Lagrange-density has the unique
form (h̄ = 1, c = 1):

(1) L =
[

1

16π
αφ†φR +

1

2
φ†||µφ

||µ − V (φ)
]√

−g + LM

√
−g

with the Higgs-potential (µ2, λ real valued constants)

(1a) V (φ) =
µ2

2
φ†φ +

λ

4!
(φ†φ)2 +

3

2

µ4

λ
.

Herein φ is an U(N) iso-vector, ||µ means its covariant derivative, R is the
Ricci-scalar and α a dimensionless factor, whereas LM contains the fermionic
and massless bosonic fields belonging to the inner gauge-group U(N). Ob-
viously, the positive Higgs-field quantity φ†φ (c.f. eq. (9a)) plays the role of
a variable reciprocal gravitational ”constant”. Formula (1) is related to a
generalization of Brans and Dicke’s theory proposed by Bergmann [4] and
Wagoner [5] as well as by Zee [6]. We want to point here to some interesting
features of the ansatz (1), which unifies gravity with the other interactions
using a minimum of effort.

Before symmetry breaking the theory following from (1) contains no grav-
itational constant; the only dimensional free parameters are those of the
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Higgs-potential. Such a theory of gravity may be renormalizable according
to the criterion given by de Witt [7], although it is not unitary. - Concerning
symmetry breaking the ground-state of the Higgs-field is given by (µ2 < 0)

(2) φ†0φ0 = v2 =
−6µ2

λ

with

(2a) V (φ0) = 0.

By this ground state the quantity

(3) G = (αv2)−1

related to Newton’s gravitational constant (see below), as well as the mass
of the gauge bosons

(4) MW =
√

π gv

are determined (g coupling constant of the gauge group U(N)). Accordingly
the factor α means the ratio

(5) α ' (MP /MW )2 >> 1,

where MP is the Planck mass.
The field equations for gravity and Higgs-field following from (1) take the

form:

Rµν −
1

2
Rgµν +

8π

αφ†φ
V (φ)gµν =

= − 8π

αφ†φ
Tµν −

4π

αφ†φ

[
φ†||µφ||ν + φ†||νφ||µ

]
+

(6) +
4π

αφ†φ
φ†||λφ

||λgµν −
1

φ†φ

[
(φ†φ)||µ||ν − (φ†φ)||β ||β gµν

]
and

(7) φ||µ||µ −
1

8π
αφR + µ2φ +

λ

6
(φ†φ)φ = 0
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as well as the adjoint equation of (7). Herein Tµν is the symmetric energy
momentum tensor belonging to LM

√
−g in (1) alone. The conservation laws

of energy and momentum read

(8) Tµ
ν
||ν = 0 .

Now we perform the symmetry breaking and introduce the unitary gauge.
If with respect to (2)

(9) φ0 = vN ; N †N = 1; N = const.

represents the ground-state, the Higgs-field φ can be brought within the
unitary gauge into the form:

(9a) φ = ρN, ρ2 = φ†φ.

For the following we use therefore instead of φ the real valued field quantity

(10) ϕ = ρ/v

(ϕ = 1 represents the ground-state). Restricting ourselves to the field equa-
tions for gravity i.e. the metric gµν and the Higgs-field ϕ we find from (6)
and (7) ( |µ means the usual partial derivative):

Rµν −
1

2
Rgµν +

12π

αv2

µ4

λ
ϕ−2(ϕ2 − 1)2gµν =

= − 8π

αv2
ϕ−2Tµν −

8π

α
(1 +

α

4π
)ϕ−2ϕ|µϕ|ν+

+
4π

α
(1 +

α

2π
)ϕ−2ϕ|λϕ|λgµν−

(11) −2ϕ−1
[
ϕ|µ||ν − ϕ|λ

||λ gµν

]
and

(12)
4π

α
(1 +

3α

4π
)ϕ2|µ

||µ +
48π

αv2

µ4

λ
(ϕ2 − 1) =

8π

αv2
T .
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With respect to (3) and (5) we obtain from (11) and (12) the final result:

Rµν −
1

2
Rgµν + 12πG

µ4

λ
ϕ−2(ϕ2 − 1)2gµν =

= −8πGϕ−2Tµν − 2ϕ−2ϕ|µϕ|ν+

(13) +2ϕ−2ϕ|λϕ|λ gµν − 2ϕ−1
[
ϕ|µ||ν − ϕ|λ

||λgµν

]
and

(14) ϕ2|µ
||µ + 16πG

µ4

λ
(ϕ2 − 1) =

8πG

3
T .

There are two very important differences with respect to Brans and
Dicke’s scalar tensor theory. First, the scalar field ϕ possesses a finite range
l = M−1

ϕ corresponding to the mass term in (14) according to which the
excited Higgs-field has the mass square:

(15) M2
ϕ = 16πG

µ4

λ
.

This is smaller than the usual value by the factor α−1. In this connection we
note, that G in (3), (13) and (14) represents Newton’s gravitational constant
only up to a factor of the order of one. The exact connection between G
and the Newtonian value GN is given by the Newtonian limit of (13) and
(14) and this depends, as shown below, on the value of l for the range of
the scalar field. In case of a suitable choice of this range also no difficulties
with respect to the solar-relativistic effects or gravitational waves are to be
expected; however the possibility of a fifth force of Yukawa type is given.

Secondly there exists according to the left hand side of (13) a cosmological
function (instead of a cosmological constant)

(16) λ(ϕ) = 12πG
µ4

λ
ϕ−2(ϕ2 − 1)2,

which is necessarily positive. This is very interesting because a positive value
of a cosmological function (constant) corresponds to a positive mass density,
so that this theory could solve the problem of missing mass in cosmology
automatically.

4



For the ground-state of the Higgs-field (ϕ ≡ 1) the cosmological function
λ(ϕ) vanishes (see also (2a)) and from (13) and (14) it follows:

(17) Rµν −
1

2
Rgµν = −8πGTµν , T = 0.

This is Einstein’s theory with light-like matter. Einstein’s theory is realized
only after symmetry breaking in the neighbourhood of the ground-state. Of
course, in case of vanishing energy momentum tensor the ground-state is
realized by the Minkowski space-time and ϕ = 1.

Finally we investigate the Newtonian limit. For this we set

(18) gµν = ηµν + hµν ; ϕ = 1 + ζ

and linearize with respect to |hµν | << 1 and |ζ| << 1 ( ηµν =
diag(1,−1,−1,−1). In this way we obtain from (13) and (14) using the de
Donder gauge hµ

ν
|ν − 1

2
h|µ = 0:

hµν
|λ
|λ = −16πG(Tµν −

1

3
Tηµν)+

(19) +32πG
µ4

λ
ζηµν − 4ζ|µ|ν

and

(20) ζ |λ|λ + 16πG
µ4

λ
ζ =

4πG

3
T .

Because of the geodesic equation of motion of a free point particle in conse-
quence of (8)

(21) h00 = 2φN

is valid, where φN is the Newtonian gravitational potential. Insertion of (21)
into (19) yields:

φN
|λ
|λ = −8πG(T00 −

1

3
T )+

(22) +16πG
µ4

λ
ζ − 2ζ|0|0 .
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For a point particle of mass M at rest in the origin the solution of (20) reads:

(23) ζ =
MG

3r
e−r/l , l2 =

λ

16πGµ4
.

Herewith the solution of (22) for a point particle takes the form:

(24) φN = −MG

r
(1 +

1

3
e−r/l).

Consequently G = G∞ is valid, where G∞ is the Newtonian gravitational
constant GN determined by a torsion-balance experiment in the laboratory
in the case r >> l. In case of r << l one finds G = 3

4
G0 with G0 = GN . It is

interesting that such gravitational potentials, where the usual r−1-potential
is supplemented by a Yukawa term, are discussed in connection with the fifth
force [8] and in view of the flat rotation curves of spiral galaxies [9].

In the static linear Newtonian limit, the potential equations following
from (20) and (22) are

∆ζ − 1

l2
ζ = −4πG

3
ρ ,

(25) ∆φN +
1

l2
ζ =

16πG

3
ρ

instead of the Poisson-equation. Herein ϕ−2 = 1−2ζ represents the variability
of the gravitational ”constant” in first order (cf. eq. (13)); it decreases in view
of (23) with decreasing distance from a mass. The cosmological function (16)
is of second order in ζ and therefore not yet contained in (25); however, its
absolute value increases with decreasing distance from a mass. Finally we
note, that the scalar-field ζ acts in the potential equation (25) for φN as a
negative mass-density (anti-gravity), c.f. [9]. The applications of these ideas
to modern astrophysical and cosmological questions are in preparation.
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