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Abstract

A general Lorentz-invariant scalar gravitational interaction theory with self-
interaction is presented. It is shown that this theory leads to the recently
discovered Higgs-field gravity and thereby provides a new approach to the
Higgs-potential.

1. Introduction.

Scalar theories of elementary particles and their interactions are of interest
due to their importance as Higgs fields in the theory of spontaneous symme-
try breaking. In addition, scalar theories of gravitation have a long history;
the classical example is the Newtonian theory of gravity, but also more mod-
ern theories, for example the Dicke-Brans-Jordan theory (see [1]) and the
examples in ref. [2], deal with scalar interactions.

Recently we have pointed out (ref. [3]-[4]) that the scalar interaction me-
diated by the Higgs field in theories with spontaneous symmetry breaking
is of gravitational type, i.e., it is coupled to the masses of the elementary
particles and not to any other charges: Mass and not some currents is the
source of the scalar Higgs field, and the Higgs-field acts back by its gradient
on the mass in the momentum law. Moreover, the spontaneous symmetry
breaking generates exactly the mass of the elementary particles which then
serves as active and passive gravitational mass. Thereby, Einstein’s ”princi-
ple of relativity of inertia” (Mach’s principle, see ref. [5]) is fulfilled: Mass
is generated by the same mechanism as the gravitational interaction. In this
sense, the inertial mass as a measure for the resistance of a particle against
the relative accelleration with respect to other particles has its origin in the
gravitational interaction with all other particles in the Universe.

Here we go the opposite way and construct a very general scalar gravita-
tional theory between elementary particles on the level of special relativity.
It is imposed to contain self-interaction, and to obey a Yukawa-type field
equation, i.e. we consider a massive scalar field. This is even necessary, be-
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cause the only source of Lorentz-invariant scalar gravity is the trace of the
energy-momentum-tensor, which vanishes in the massless case. We find that
the scalar field equation is exactly that of the Higgs field with the correct
Higgs potential.

2. Structure of the Lagrange-density.

The most general Lagrange density of a pure scalar field ϕ containing the
derivatives of ϕ at most quadratically is given by

(2.1) L0 = L0(∂λϕ, ϕ) =
1

2
(∂λϕ)∂λϕ− V (ϕ),

where V (ϕ) is some arbitrary functional of the field ϕ, usually called the
potential term of L0.

To construct a theory of scalar interaction, a ”matter” term LM and an
”interaction” part Lint must be added to (2.1) in order to obtain the complete
Lagrange density:

(2.2) L = L0 + LM + Lint,

where LM is the Lorentz-invariant Lagrange density of the pure matter fields
ψA (A represents some set of inner, spinor or tensor indices which are not
specified here) and Lint is the interaction part depending on ϕ and ψA only
and not on their derivatives:

(2.3) LM = LM(∂λψ
A, ψA),

(2.4) Lint = Lint(ϕ, ψ
A).

The field equations for ϕ and ψA obtained from (2.2) by the variational
principle are :

(2.5) ∂λ∂
λϕ+

∂V

∂ϕ
=
∂Lint

∂ϕ
=: −η(ϕ, ψA),
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(2.6) ∂λp
λ

A − (
∂LM

∂ψA
+
∂Lint

∂ψA
) = 0

with the source η(ϕ, ψA) of the scalar field ϕ and the canonical momentum
of the matter field

(2.7) p λ
A :=

∂LM

∂(∂λψA)
.

The canonical energy-momentum tensor is given by

(2.8) T µ
λ = T µ

λ (ϕ) + T µ
λ (ψ),

where

(2.8a) T µ
λ (ϕ) = (∂λϕ)∂µϕ− δµ

λ

[
1

2
(∂vϕ)∂vϕ− V (ϕ)

]
and

(2.8b) T µ
λ (ψ) = p µ

A ∂λψ
A − δµ

λ(LM + Lint)

are the parts of T µ
λ resulting from the pure scalar field ϕ and the matter

fields ψA, respectively. It obeys with respect to the field equations (2.5) and
(2.6) the equation of continuity:

(2.9) ∂µT
µ

λ = 0

and has the trace

T = T λ
λ = T (ϕ) + T (ψ) =

[
−(∂λϕ)∂λϕ+ 4V (ϕ)

]

(2.10) +
[
p λ

A ∂λψ
A − 4(LM + Lint)

]
,

which represents the rest mass-energy densities of the scalar field and the
matter field, respectively.

Splitting T µ
λ according to (2.8), the equation of continuity (2.9) yields

(2.11) 0 = ∂µT
µ

λ (ϕ) + ∂µT
µ

λ (ψ) = −(∂λϕ)η + ∂µT
µ

λ (ψ),
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where equation (2.8a) and the field equation of the scalar field (2.5) are
inserted. Obviously, equ. (2.11) can be rewritten as

(2.11a) ∂µT
µ

λ (ψ) = (∂λϕ) · η.

By intergration over a spacelike hypersurface one obtains, neglecting bound-
ary terms on the left-hand side of (2.11a)

(2.12)
d

dt
Pλ :=

∂

∂t

∫
d3xT 0

λ (ψ) =
∫
d3x(∂λϕ)η =: Kλ,

which is the momentum law for the matter field: The 4-momentum Pλ of
the matter fields on the left-hand side of (2.12) is changed with time by the
4-force Kλ caused by the 4-gradient of the scalar field ϕ acting on the matter
field described by η, which is simultaneously the source of the scalar field
ϕ according to (2.5). As it must be, particles that do not participate in the
interaction are not influenced by the scalar force, due to η = 0 in this case.

Evidently equs. (2.5) and (2.12) describe a self-consistent gravitational in-
teraction only if η is proportional to the trace T (ψ) of the energy-momentum
tensor of the matter field according to (2.10).

3. Determination of the potential.

Now, in a physical theory, the rest mass-energy must have a lower bound in
order to avoid infinite negative energies, and, therefore, according to (2.10)
the potential term V (ϕ) should have a minimum, say, at ϕ = v. Expanding
the potential in the neighbourhood of this minimum, one obtains

(3.1) V (ϕ) = V0 +
1

2
(
M

h̄
)2(ϕ− v)2 +O

[
(ϕ− v)3

]
,

with V0 = V (v) and M = const.. At this stage we assume v 6= 0 1; fur-
thermore it is convenient to introduce the excited scalar field χ according

1It should be noted that in the case of v = 0 no meaningful scalar gravity can be
constructed.
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to

(3.2) ϕ = v(1 + χ).

With the new source

(3.3) η̂ = −∂Lint

∂χ
= vη

and the new potential

(3.4) V̂ = V̂ (χ) =
V (χ)

v2
=
V0

v2
+

1

2
(
M

h̄
)2χ2 +O(χ3)

one obtains from (2.5) the field equations for the excited scalar field χ

(3.5) ∂λ∂
λχ+

∂V̂

∂χ
= − 1

v2
η̂

with

(3.6)
∂V̂

∂χ
= (

M

h̄
)2χ+O(χ2),

according to which M is the mass of the excited scalar field χ. Analogously,
the new equation of continuity, see (2.11a), reads

(3.7) ∂µT
µ

λ (ψ) = (∂λχ) · η̂,

and the momentum law (2.12) takes the new form:

(3.8)
d

dt
Pλ =

∂

∂t

∫
d3xT 0

λ (ψ) =
∫
d3x(∂λχ)η̂ = Kλ.

Comparison with Newtonian gravity shows that 1
v2 plays the role of the grav-

itational constant.

For the establishment of the gravitational character of the scalar interac-
tion in detail, it remains (see the last remark of sect. 2) to postulate that the
source η̂ in (3.5) is proportional to the trace T (ψ) of the energy momentum
tensor of the matter fields. This means

(3.9) η̂ = F (χ)T (ψ)
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with some functional F (χ). To realize the gravitational self-interaction we
add F (χ)T (χ)/v2 on both sides of (3.5) where

(3.10) T (χ) = T (ϕ).

In this way we get from (3.5) the field equation for the scalar field in the
form:

(3.11) ∂λ∂
λχ+

∂V̂

∂χ
− F (χ)

v2
T (χ) = −F (χ)

v2
(T (ψ) + T (χ)).

Simultaneously the momentum law (3.8) reads:

(3.12)
d

dt
Pλ =

∫
d3x(∂λχ)F (χ)T (ψ).

Dividing (3.11) by F (χ) we obtain:

(3.13)
1

F (χ)
∂λ∂

λχ+
1

F (χ)

∂V̂

∂χ
− 1

v2
T (χ) = − 1

v2
(T (ψ) + T (χ)).

In case of a self-interacting scalar gravity, a functional u(χ) should exist
in such a way, that equ. (3.13) takes the form (a = const.):

(3.14) ∂λ∂
λu+ a2u = − 1

v2
(T (ψ) + T (u)).

This is a Yukawa-equation with the mass-term a2u and self-interaction de-
scribed by the term T (u); for T (u) one obtains from (2.10) and (3.10) using
(3.2):

(3.15) T (u) = T (χ) = −v2
[
(∂λχ)∂λχ− 4V̂ (χ)

]
.

Inserting the identity

(3.16) ∂λ∂
λu(χ) =

∂u

∂χ
∂λ∂

λχ+ (
∂2u

∂χ2
)(∂λχ)∂λχ

into (3.14) and subtracting of (3.13) after insertion of (3.15) we find

(3.17) (
∂u

∂χ
− 1

F
)∂λ∂

λχ+ (
∂2u

dχ2
− 1)(∂λχ)∂λχ− (

1

F

∂V̂

∂χ
− 4V̂ − a2u) = 0.

6



This equation must hold for arbitrary ∂λχ, ∂λ∂
λχ; this requires that each of

the three terms in (3.17) vanishes independently, resulting in

(3.18a)
∂2u

∂χ2
= 1,

(3.18b)
1

F

∂V̂

∂χ
− 4V̂ (χ)− a2u(χ) = 0,

(3.18c) F (χ) =
1

∂u/∂χ
.

Integration of (3.18a) determines u up to two constants of integration A and
B:

(3.19) u =
1

2
(χ2 + 2Aχ+B) =

1

2

[
(χ+ A)2 + (B − A2)

]
.

From this one has

(3.19a)
∂u

∂χ
= χ+ A,

and (3.18c) gives the functional F (χ):

(3.20) F (χ) =
1

χ+ A
,

by which (3.18b) yields after integration:

(3.21) V̂ (χ) = V̂0 +
C

2
a2

[
(χ+ A)2 − 1

4C

]2

with

(3.21a) V̂0 =
1

8
a2

[
A2 −B − 1

4C

]
,

where C is the new integration constant. Herewith, the demanded structure
of (3.14) is achieved.
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Now, in order to specify the potential V̂ or V explicitely, the constants
A,B,C and a must be determined. Remembering that V̂ has a minimum at
χ = 0 results in the relation

(3.22) C =
1

4A2
.

Herewith V̂0 is simplified to

(3.22a) V̂0 = −B
8
a2

and V̂ (χ) takes the form:

(3.23) V̂ (χ) = V̂0 +
1

2
(
Aa

2
)2

[
(1 +

χ

A
)2 − 1

]2

.

Comparison of (3.23) with (3.4) gives

(3.24) a =
M

h̄
,

so that M represents also the mass of the field u (cf. (3.14)).

The integration constant A lacks a deeper physical meaning because it
can be eliminated by the substitution of the scalar field ϕ by a new one φ
differing from ϕ by a constant only:

(3.25) ϕ→ φ = ϕ+ (A− 1)v.

φ obeys the same field equation (2.5) as ϕ because of ∂V
∂φ

= ∂V
∂ϕ

:

(3.26) ∂λ∂
λφ+

∂V

∂φ
= −η.

The use of φ instead of ϕ leads to a minimum of V (φ) at

(3.27) φ = v′ = φ(ϕ = v) = Av.

The new excited scalar field is

(3.28) χ′ =
φ− v′

v′
=
χ

A
,
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which obeys a field equation of the form of (3.5):

(3.29) ∂λ∂
λχ′ +

∂V̂ ′

∂χ′
= − 1

v′2
η̂′,

where

(3.29a) V̂ ′(χ′) =
V

v′2
=

V̂

A2

and

(3.29b) η̂′ = v′η = Aη̂ = −∂Lint

∂χ′
.

With the use of the relations (3.24), (3.28) and (3.29a)the following expres-
sion for V̂ ′ follows from equation (3.23):

(3.30) V̂ ′(χ′) = V̂ ′
0 +

1

8
(
M

h̄
)2

[
(1 + χ′)2 − 1

]2
,

where

(3.30a) V̂ ′
0 =

V̂0

A2
= −1

8

B

A2
(
M

h̄
)2.

Obviously only the quotient B/A2 appears in the potential (3.30).

Now we are able to write down the potential V (φ) in the field equation
(3.26) explicitely; insertion of (3.30) into (3.29a) and resolution with respect
to V give with the use of (3.28):

(3.31) V (φ) =
v′2

8

[
1− B

A2

]
(
M

h̄
)2 − 1

4
(
M

h̄
)2φ2 +

1

8
(
M

h̄
)2 1

v′2
φ4;

the minimum lies at φ = v′ and this minimum value is V (v′) = − B
A2 (

M
h̄

)2 v′2

8
.

The quantity B/A2 has no deeper meaning because it is contained only in
the additive constant of the potential (3.31) or in its minimum value. For
simplicity, we choose without restriction of generality the additive constant
of the potential V (φ) to be equal to zero; this means:

(3.31a)
B

A2
= 1.

Evidently, equation (3.31) represents the Higgs potential, which is here
derived by postulating a scalar self-interacting massive gravitational field.
Moreover the field equation (3.26) for the scalar field φ is exactly the Higgs-
field equation.
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4. Scalar-Gravity with self-interaction.

Finally we give an explicite representation of the self-interacting massive
scalar gravity introduced in sect. 3. In view of the ground-state v′ for the
scalar field φ according to (3.27) and the excited scalar field χ′ given by
(3.28) we rewrite the momentum law (3.12) and the Yukawa-field-equation
(3.14) with the use of (3.24) as follows:

(4.1)
d

dt
Pλ =

∫
d3x(∂λχ

′)F ′(χ′)T (ψ)

and

(4.2) ∂λ∂
λu′ + (

M

h̄
)2u′ = − 1

v′2
(T (ψ) + T (u′))

(T (u′) = T (χ′)) with

(4.3a) u′ =
v2

v′2
u =

1

A2
u =

1

2
(1 + χ′)2

and

(4.3b) F ′(χ′) = AF (χ′) =
1

1 + χ′

using (3.19), (3.20) and (3.31a). With respect to the 4-force on the right hand
side of (4.1) it is convenient to choose instead of χ′

(4.4) ζ = ln(1 + χ′)

as new excited scalar field. Herewith it follows u′ = 1
2
e2ζ and the equations

(4.1) and (4.2) take the form:

(4.5)
d

dt
Pλ =

∫
d3x(∂λζ)T (ψ),

(4.6) ∂λ∂
λe2ζ + (

M

h̄
)2e2ζ = − 2

v′2
(T (ψ) + T (ζ))
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where T (ζ) = T (χ′). Evidently, these equations describe a massive scalar
gravitational interaction with self-interaction, where with respect to the New-
tonian limit (linearization in ζ)

(4.6a)
1

v′2
= 4πGγ

has the meaning of the gravitational constant (G Newtonian gravitational
constant) and γ is a numerical factor comparing the strength of the scalar
gravity in question with the Newtonian one. Furthermore in equ. (4.6) M is
the mass of the excited scalar field ζ; simultaneously there appears a cosmo-
logical constant 1

2
(M/h̄)2, which however drops out against the trace of the

energy-momentum tensor of the ground-state T (ζ = 0).

It may be of interest that a special-relativistic version of the Newtonian
gravity is included in the general theory for the special case

(4.7a) v′−2 = 4πG, (γ = 1)

and

(4.7b) M <
h̄

c · (104ly)
≈ 10−26(

eV

c2
),

so that the range of this scalar gravity is at least 104 light-years because there
is experimental evidence that Newton’s law of gravitation is valid at least up
to this distance.
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