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Abstract

The scalar background field and its consequences are discussed for the Friedmann

type cosmological solutions of the scalar-tensor theory of gravity with the Higgs

field of the Standard Model as the scalar gravitational field.



1 Introduction

In their scalar-tensor theory of gravity, Brans and Dicke [3] as well as successors

including Bergmann [2] and Wagoner [10], replaced the Newtonian gravitational

constant by a scalar field, i.e. function, which within their model, enters theory as

a completely new field.

However, modern physics already deals with another scalar field, the Higgs field

of the Standard Model of particle physics. As was first proposed by Zee [11], it

appears appealing to use this scalar Higgs field of particle physics also as the scalar

field in a scalar-tensor theory of gravity; this approach has been deeper investigated

by Dehnen, Frommert, and Ghaboussi [6]. In this theory, in addition to its role

in the Standard Model to make the particles massive, the scalar Higgs field also

generates the gravitational constant G, in the sense discussed in Adler’s review

article [1] of generating an ‘induced’ G from symmetry breaking.

Surprisingly however, if the Higgs field of the SU(3)× SU(2)× U(1) Standard

Model of the elementary particles is employed to generate G, the Higgs field loses

its source, i.e. can no longer be generated by fermions and gauge bosons unless

in the very weak gravitational channel (see [7]). Similar results were obtained

independently by van der Bij [8]. As Styp-Rekowski and Frommert [9] have shown,

the only physically meaningful static solution of this theory is the trivial one without

any excited Higgs field present. As the physical world is not static, a potential scalar
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field of the cosmological background is most interesting, both on its own (e.g., for

inflational scenarios; see Cervantes-Cota and Dehnen [4]) and in order to have a fit

for a more realistic physical (i.e., dynamical) model configuration (e.g., galaxy).

Here we investigate the cosmological background scalar field for Friedmann type

cosmologies analytically. After a general discussion of the cosmological field equa-

tions, we implicitely assume weak scalar fields and discuss the solutions of the scalar

field equation for given expansion laws. Finally, we obtain effective Einstein field

equations as well as effective, time-dependent values for the gravitational and the

cosmological ”constant”, as well as an effective vacuum energy density.

The reader can find the whole underlying formalism of this theory in Dehnen

and Frommert [7].

2 Friedmann type cosmology in the Higgs scalar-

tensor theory

As outlined in [7], the Higgs scalar-tensor theory can be obtained by adding the

scalar-tensor gravitational Lagrange density to the matter Lagrangian of particle

physics, which must be taken in curved spacetime here, of course. After performing
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the symmetry breaking, one arrives at the following Lagrange density1:

L =

{
αv2

16π

[
(1 + ϕ)2 R− 2Λ

]
+

v2

2
ϕ|µϕ

|µ − V (ϕ) + LM

}
(−g)1/2 (1)

where ϕ is the excited Higgs field, R the Ricci scalar corresponding to and g the

determinant of the metric gµν , V (ϕ) the Higgs potential, and LM the effective

matter Lagrangian after symmetry breaking of the fermions and gauge bosons of

the standard model of particle physics (see e.g. [5]). v is the constant absolute (real)

value of the vacuum scalar field, or Higgs field ground state, and α is a numerical

constant which, for the standard model Higgs field considered here, is given by the

square of the ratio of the Planck mass to the mass of the electroweak W bosons:

α ' (MPl/MW )2 ' 1033 (2)

With the convenient substitution for the excited Higgs field ξ = (1 + ϕ)2 − 1, the

Higgs potential V (ξ) is defined by:

V (ξ) =
3

32πG
M2

(
1 +

4π

3α

)
ξ2 ≈ 3M2

32πG
ξ2 (3)

From the variation of the Lagrange density (1), one obtains for the excited Higgs

field ξ the following homogeneous, covariant Klein-Gordon equation, see [7]):

ξ
|µ
‖µ + M2ξ −

4
3
Λ

1 + 4π
3α

= 0 (4)

1Throughout this paper we use h̄ = c = 1 and the metric signature (+ − −−). The symbol

(. . .)|µ denotes the partial, (. . .)‖µ the covariant derivative with respect to the coordinate xµ. For

the cosmological discussion here, we also include the cosmological constant Λ which was omitted

in the previous works.
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where M denotes the mass of the Higgs particles in this theory2. The field equation

for the metric as the tensorial gravitational field reads:

Rµν −
1

2
Rgµν +

Λ

1 + ξ
gµν

= − 8πG

1 + ξ

[
Tµν +

v2

4 (1 + ξ)

(
ξ|µξ|ν −

1

2
ξ|λξ

|λgµν

)
+ V (ξ)gµν

]

− 1

1 + ξ

[
ξ|µ‖ν − ξ

|λ
‖λgµν

]
. (5)

with the Ricci tensor Rµν belonging to the metric gµν and Tµν as energy-momentum

tensor of matter. Because of the very large value of α (which is responsible for

the relative weakness of gravity as well as for the rather small Higgs mass in this

theory), we will neglect the 1/α terms in equations (4) and (3) in the following.

Here we look for solutions of the scalar field equation (4) on the cosmological

background of a Robertson-Walker metric, defined by the line element (in isotropic

spatial coordinates):

ds2 = dt2 − a(t)2 1

1− (ε/4)r2

(
dr2 + r2dΩ2

)
(6)

where, as usual, ε = 0, +1,−1 corresponds to the spatially flat, the closed, and

the open model universe, respectively, and a(t) is the time dependent scale factor.

Moreover, we approximate the matter in cosmos by a perfect fluid, characterized by

its density % and pressure p only, as usual, and demand that % and p as well as the

2This equation is homogenous as the constant Λ term may be absorbed in the excited Higgs

field ξ)
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scalar field ξ are functions of the time coordinate t only (cosmological principle).

Then the scalar field equation (4) becomes3

ξ̈ + 3
ȧ

a
ξ̇ + M2ξ − 4

3
Λ ≡ 0 (7)

while the nontrivial components of the Einstein equations are the Friedmann equa-

tions:

ȧ2 + ε

a2
− Λ/3

1 + ξ
=

8πG

3

1

1 + ξ

[
% +

v2/8

1 + ξ
ξ̇2

]

+
1

1 + ξ

[
− ȧ

a
ξ̇ +

1

4
M2

(
1 +

4π

3α

)
ξ2
]

(8)

2
ä

a
+

ȧ2 + ε

a2
− Λ

1 + ξ
= − 8πG

1 + ξ

[
p +

v2/8

1 + ξ
ξ̇2

]

− 1

1 + ξ

[
ξ̈ + 2

ȧ

a
ξ̇ − 3

4

(
M

h̄

)2 (
1 +

4π

3α

)
ξ2

]
. (9)

These equations are augmented by the equation of continuity for the energy mo-

mentum tensor, which here reduces to

%̇ + 3
ȧ

a
(% + p) =

ξ̇

2 (1 + ξ)
(%− 3p) . (10)

For the discussion of the cosmological background scalar field, one notes first

that, up to terms proportional to the Hubble constant H = ȧ/a and the cosmological

constant Λ, the scalar field equation (7) is solved by the periodic function

ξ = ξ0 cos [ω (t− t0)] , ω = ωM = M

(
=

Mc2

h̄

)
(11)

3(. . .)̇ := ∂
∂t (. . .) denotes the time derivative of (. . .).
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with a constant amplitude ξ0 and period ωM , which is the Compton frequency be-

longing to the Higgs mass M , and thus very large compared to the Hubble constant.

One could expect modifications of ξ0 and ωM for the exact solutions which are time

dependent, but change significantly only on the cosmological time scale, so that for

all non-cosmological considerations equation (11) should be a good approximation.

For the following more detailed discussion, we note that the term with the

cosmological constant Λ in the scalar field equation (7) is even small compared to

the one containing the Hubble constant, and can be absorbed in ξ as a small additive

contribution. Therefore, we can restrict ourselves here to discuss the equation for

Λ = 0 only, which reads:

ξ̈ + 3
ȧ

a
ξ̇ + M2ξ = 0 (12)

This equation may be simplified with the ansatz:

ξ(t) =: a−3/2u(t) (13)

Herewith the field equation (12) reads:

ü +

[
M2 − 3

4

(
ȧ

a

)2

− 3

2

ä

a

]
u = 0 . (14)

Up to terms of order H2 and ä/a = −qH2 (with the cosmological acceleration

parameter4 q), the solution of this equation is identical to equation (11). Using the

cosmological parameters, the Hubble constant H and the acceleration parameter q,

4q is half the density parameter Ω in standard Friedmann cosmology without cosmological Λ.
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equation (14) reads

ü +
[
M2 +

3

2
(2q − 1) H2

]
u = 0 . (15)

For times small compared to the Hubble time 1/H, this equation should be approx-

imately solved by the solutions (11) of the approximated equation (7), so that:

u = u0 cos [M (t− t0)] , ξ = u0a
−3/2 cos [M (t− t0)] (16)

This solution is accurate to one order more (i.e., to the second order) in H, or

considered time differences compared to the Hubble time, than solution (11). Some

higher acuracy can be obtained by inserting the current values of the function-valued

parameters H and q into equation (15):

ü +
[
M2 +

3

2
(2q0 − 1) H0

2
]
u = 0 , q0 = q(t0) = const , H0 = H(t0) = const ,

(17)

which is solved by

u = u0 cos

√1 +
3

2
(2q0 − 1)

(
H0

M

)2

M (t− t0)

 ,

ξ = u0a
−3/2 cos

√1 +
3

2
(2q0 − 1)

(
H0

M

)2

M (t− t0)

 . (18)

This solution differs from the above, equation (16), by a slightly different oscillation

frequency, deviating from that in equation (16) (which is the Compton frequency

corresponding to the Higgs mass M) by a correction of the order given by the square

of the ratio5 of the two characteristic times relevant here, the Compton time 1/M

5The value of this ratio can be estimated, taking into account that the Higgs mass in this theory
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corresponding to the Higgs mass M , and the Hubble time 1/H0: (H0/M)2. The

smallness of this value can already be seen by estimating the corrective term in the

field equation (17), or the frequency in (18), using the second Friedmann equation

(9), which yields, neglecting the scalar field ξ:

(2q − 1)H2 =
ε

a2
+ 8πGp + Λ;

i.e., it is determined by the largest of its three terms: If ε = ±1 (non-flat case),

baryonic matter dominates (p � %) and Λ � a−2, it is essentially given by ±1/a2,

while for the flat case, either the weak matter pressure p or the cosmological constant

Λ determines this correction. In view of this small value, one has to consider that

for a self-consistent solution, the contributions of the scalar field in the Friedmann

equations (8) and (9) must be taken into account, and it is not guaranteed that

these are smaller than the deviations discussed here. This will be important for

attempts to iterate cosmological solutions in this theory.

One may also discuss the exact solutions. A self-consistent, exact and simul-

taneous solution of the relevant equations (8,9,10,12) cannot be given analytically.

is smaller than the usual one by a factor of about 2.5 · 1016, or at least about 2.5 · 10−6eV/c2,

corresponding to a Compton time of h̄/Mc2 ≈ 2.6 · 10−10s. This must be compared to the Hubble

time of 13 billion years (assuming H0 = 75km/(s Mpc)), so that

(
H0

M
)2 ≈ 4 · 10−55

8



However, it can be obtained numerically to some approximation, which was done

by Cervantes-Cota and Dehnen [4], and is of particular interest, especially in the

context of possible inflation scenarios. Here we discuss analytic background solu-

tions, which are obtained if a Friedmann solution is given as external field. Then

it is possible to solve equation (16) analytically for each given ansatz for a(t). This

is presented in the following for the two simplest cases, where it is possible to give

the exact solutions (also mentioned in [4] as the limiting cases for the inflationary

cosmology):

1. the spatially flat Friedmann universe with Λ = 0,

2. the empty universe with cosmological constant Λ.

One may hope that these background solutions are of interest in considerations

where cosmology plays the role of a background, i.e. the dynamics of galaxies or

clusters of galaxies.

2.1 The spatially flat Friedmann universe with Λ = 0

In this case, we have the following time evolution of the scale parameter a(t):

a(t) = At2/3 (19)

and therefore

H(t) =
ȧ

a
=

2

3t
(20)
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ä

a
= − 2

9t2

(
q =

1

2

)
(21)

One may notice that this ansatz leads to the following equation for ξ:

ξ = a−3/2u = A−3/2t−1u

The differential equation (14) for u simplifies exactly to

ü + M2u = 0 , (22)

which is identical to the equation without H0, and has the exact solution

u(t) = u0 cos [M (t− t0)] (23)

or

ξ = A−3/2u0t
−1 cos [M (t− t0)] = ξ0t0

cos [M (t− t0)]

t
, (24)

where the relation for the amplitude at present time, ξ0 = A−3/2u0/t0 = a0
−3/2u0,

was used. To see the approximate constancy of the amplitude over times small

compared to the Hubble time (or world age), one may expand the time t as t = t0+T .

Then the solution (24) can be rewritten as

ξ = ξ0(t) cos [M (t− t0)] , where ξ0(t) =
ξ0

1 + T/t0
≈ ξ0

(
1− 3

2
H0T

)
(25)

2.2 The empty universe with non-vanishing Λ (de Sitter

universe)

As a second ansatz, we investigate the case of the matter free universe with non-

vanishing Λ (matter influence neglegible compared with that of the cosmological
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constant). Then we have

H =
ȧ

a
=
√

Λ/3 = const , a = a0e
H(t−t0) , q = −1 . (26)

With this ansatz, the differential equation (14) for u takes the form

ü +
(
M2 − 9

4
H2
)

u = 0 , (27)

which has the solution

u = u0 cos

√M2 − 9

4
H2 (t− t0)

 (28)

or

ξ = a−3/2u = ξ0e
− 3

2
H(t−t0) cos

√M2 − 9

4
H2 (t− t0)

 (29)

Again, with t = t0 + T , the time dependent amplitude ξ0(t) of this solution (see

(25)) can be expanded in orders of T/t0 or Ht, and has the same form as above up

to the first order: ξ0(t) = ξ0 (1− (3/2)HT )

3 Remarks on the exact solutions

The scalar field equation (14) or (15), in view of the approximate solutions (16)

or (18), may be rewritten with the ansatz u = u0(t) cos(β(t)), where β(t) =

M
∫ t dt′

√
1 + κ(t′), so that β̇ = M

√
1 + κ(t) (κ � 1 if H/M � 1, tH � h̄/(Mc2)).

Then one obtains:

ü0 +
[
−M2κ +

3

4
(2q − 1)H2

]
u0 = 0 (30)

β̇u0
2 = M

√
1 + κu0

2 = const =: C (31)
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The second of these equations, (31), is e.g. solved by u0 = const and β̇ = const or

κ(t) = const; this is possible if q and H in (30) are taken as constants. According

to the remarks above, the deviation of u0 and β̇ or κ(t) from constancy can be

expected to be small, at least for the large Hubble times considered here. One may

rewrite (30) by evaluating (31) in a single nonlinear differential equation for u0(t):

ü0 +
[
M2 +

3

4
(2q − 1)H2

]
u0 −

C2

u0
3

= 0 (32)

In view of the very small values of the corrections to the approximate solution (16)

or (18) we will not further discuss this equation here.

4 Effective Einstein equations with an averaged

cosmological scalar field

Having on hand that the scalar field solution for the cosmological background is

given by a rapidly oscillating function, which is overlayed over an amplitude which

changes at cosmological time scales only, it is of interest to take a new look at the

basic field equations of the theory. With the scalar field amplitude given by

ξ0 = a(t)−3/2u0 = ξ0(t) (33)
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where u0 = u0(t) must fulfill the differential equation (30) or (32), the time averaged6

(over one period of the scalar oscillation) Einstein equations take the form (“effec-

tive” Einstein equations):

Rµν −
1

2
Rgµν +

〈
Λ

1 + ξ

〉
gµν =

= Rµν −
1

2
Rgµν +

Λ√
1− ξ0(t)

2
gµν

=

〈
− 8πG

1 + ξ

[
Tµν +

v2

4 (1 + ξ)

(
ξ,µξ,ν −

1

2
ξ,λξ

,λgµν

)
+ V (ξ)gµν

]

− 1

1 + ξ

(
ξ,µ;ν −

1

2
ξ ;λ
,λ gµν

)〉

!
= − 8πG√

1− ξ0(t)
2
Tµν − δ0

µδ
0
νM

2

 1√
1− ξ0(t)

2
− 1

(1− 2π

α

)

+
M2

4
gµν

 1√
1− ξ0(t)

2
− 1

 (34)

This means that the scalar field leads to

• a (time dependent) effective gravitational “constant”

Geff =
G√

1− ξ0(t)
2

> G (35)

6The averaged terms are obtained by Taylor-expanding the factors corresponding to the 1 + ξ

denominators, so that power series of ξ are obtained, and then taking the time average given by

the formula

〈F (t)〉 = 〈F 〉(t0) =
1
2π

∫ t0+T

t0

F (t′)dt′

where T = 1/ω is the oscillation period, which must be small compared to the age of the universe,

t0. This average is a time function which varies slowly over cosmological time scales.
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• a correction factor and a negative (attractive) contribution to the cosmological

constant, or function, which becomes effectively:

Λeff =
Λ√

1− ξ0(t)
2
− M2

4

 1√
1− ξ0(t)

2
− 1

 (36)

• as well as a positive effective “energy (or mass) density of the vacuum”, given

by

T vac
µν = δ0

µδ
0
ν%vac =

δ0
µδ

0
νM

2

8πGeff

 1√
1− ξ0(t)

2
− 1

(1− 2π

α

)
(37)

As ξ0(t) changes over cosmological time scales only, it may be regarded as constant

in a first approximation unless cosmological aspects are discussed for themselves.

This may be of particular interest for the dynamics of galaxies (e.g., rotation curves)

and galaxy clusters, i.e. the dark matter problem. The calculation of the rotation

curves for some disk galaxy models is in preparation.

A possible limit for the time variations of ξ0(t) may be found from geophysical

or solar system results.
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